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The rearrangement inequality (also known as permutation inequality) is easy to understand and yet a powerful tool to 

handle inequality problems. 

 

Definition  Let  a1 ≤ a2 ≤ … ≤ an  and  b1 ≤ b2 ≤ … ≤ bn  be any real numbers. 

(a) S = a1b1 + a2b2 + …+ anbn   is called the Sorted sum of the numbers. 

(b) R = a1bn+ a2bn-1 + … + anb1  is called the Reversed sum of the numbers. 

(c) Let  c1, c2, … , cn  be any permutation of the numbers  b1 , b2 , … , bn. 

P = a1c1 + a2c2 + …+ ancn   is called the Permutated sum of the numbers. 

 

Rearrangement inequality  S ≥ P ≥ R 

 

Proof   

(a) Let P(n) be the proposition :   S ≥ P. 

 P(1)  is obviously true. 

 Assume P(k) is true for some  k ∈ N. 

 For  P(k + 1),   Since the  c’s  are the permutations of the  b’s,  suppose  bk+1 = ci  and   ck+1 = bj

  (ak+1 – ai)(bk+1 – bj) ≥ 0 ⇒ aibj + ak+1bk+1 ≥ ai bk+1 + ak+1bj  

       ⇒ aibj + ak+1bk+1 ≥ ai ci + ak+1 ck+1

  So in  P , we may switch  ci  and  ck+1  to get a possibly larger sum. 

  After switching of these terms, we come up with the inductive hypothesis  P(k). 

 ∴ P(k + 1)  is also true. 

 By the principle of mathematical induction, P(n) is true  ∀n ∈ N. 

(b) The inequality  P ≥ R  follows easily from  S ≥ P  by replacing  b1 ≤ b2 ≤ … ≤ bn   

by  –bn ≥ –bn-1 ≥ … ≥ –b1. 

 

Note: 

(a) If  ai’s  are strictly increasing, then equality holds (S = P = R) if and only if the  bi’s  are all equal. 

(b) Unlike most inequalities, we do not require the numbers involved to be positive. 

 

Corollary 1  Let  a1, a2, … , an  be  real numbers and  c1, c2, … , cn  be its permuation. Then 

   a1
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2 + … + an
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Corollary 2 Let  a1, a2, … , an  be  positive real numbers and  c1, c2, … , cn  be its permuation. Then 
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The rearrangement inequality can be used to prove many famous inequalities. Here are some of the highlights. 
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Arithmetic Mean - Geometric Mean Inequality  (A.M. ≥ G.M.) 

Let  x1, x2, …, xn  be positive numbers.  Then  n
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  By corollary 2,   n
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  Equality holds  n21n21 x...xxa...aa ===⇔===⇔ . 

 

Geometric Mean –Harmonic Mean Inequality (G.M. ≥ H.M.) 

 Let  x1, x2, …, xn  be positive numbers.  Then  
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Proof Define  G  and  a1 , a2 , … , an  similarly as in the proof of  A.M. – G.M.  

  By Corollary 2, 
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Root Mean Square - Arithmetic Mean Inequality (R.M.S. ≥ A.M.) 

 Let  x1, x2, …, xn  be numbers.  Then 
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Proof By Corollary 1, we cyclically rotate  xi , 

   x1
2 + x2

2 + … + xn
2  = x1x1 + x2x2 + … + xnxn   

   x1
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    ….   ≥  …. 
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  Adding all inequalities together, we have 

   n(x1
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2) ≥ (x1 + x2 + … + xn)2

  Result follows.  Equality holds   ⇔ x1 = x2 = … = xn

Cauchy –Bunyakovskii – Schwarz inequality (CBS inequality) 

Let  a1 , a2 , … , an ; b1 , b2 , … , bn be  real numbers. 

Then  ( ) ( )( )2
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Proof The result is trivial if  a1 = a2 = … = an = 0 or b1 = b2 = … = bn = 0.  Otherwise, define 
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 By Corollary 1,  2
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Equality holds   ⇔ xi = xn+i ⇔ ai B = biA   ∀ 1 ≤ i ≤ n. 

Chebyshev's inequality 

Let  x1 ≤ x2 ≤ … ≤ xn  and  y1 ≤ y2 ≤ … ≤ yn  be any real numbers. 

Then  
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Proof By Rearrangement inequality, we cyclically rotate  xi  and  yi , 

   x1y1 + x2y2 + … + xnyn  = x1y1 + x2y2 + … + xnyn  ≥ x1yn + x2yn-1 + … + xny1  

   x1y1 + x2y2 + … + xnyn  ≥ x1y2 + x2y3 + … + xny1  ≥ x1yn + x2yn-1 + … + xny1

     ….   ≥  ….    ≥  ….  

   x1y1 + x2y2 + … + xnyn  ≥ x1yn + x2yn-1 + … + xny1  = x1yn + x2yn-1 + … + xny1

  Adding up the inequalities and divide by  n , we get our result. 

 

Exercise Hint 

1. Find the minimum of  
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2. Proof :  (i) a2 + b2 + c2 ≥ ab + bc + ca 

   (ii) an + bn + cn ≥ abn-1 + bcn-1 + can-1

For (ii) and questions below, 

Without lost of generality, let a ≤ b ≤ c 

Consider  (a, b, c) ,  (an-1, bn-1, cn-1) 
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4. Proof :  
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5. Proof :  cba
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6. Proof : If a, b, c > 0  and n ∈ N 

 then 
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7. Proof: If a, b, c > 0, then  ( ) 3
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Consider (a, b, c) , (log a, log b, log c) 

and use Chebyshev’s inequality 
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	Proof   

